LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis.

نویسندگان

  • Dong-Keun Lee
  • Matt Geisler
  • Patricia S Springer
چکیده

Plant organs are generated from meristems throughout development. Patterning and elaboration of organ primordia occur as a result of organized cell division and expansion, processes that are likely to be controlled, in part, by meristem-derived signals. Communication between the meristem and lateral organs is crucial for meristem maintenance and organ patterning, and organ boundaries are thought to be important for mediating this communication. Arabidopsis thaliana LATERAL ORGAN FUSION1 (LOF1) encodes a MYB-domain transcription factor that is expressed in organ boundaries. lof1 mutants display defects in organ separation as a result of abnormal cell division and expansion during early boundary formation. lof1 mutants also fail to form accessory shoot meristems. Mutations in the closely related LATERAL ORGAN FUSION2 (LOF2) gene enhance the lof1 phenotype, such that lof1 lof2 double mutants display additional fusion defects. Genetic interactions with the CUP-SHAPED COTYLEDON genes CUC2 and CUC3 revealed a role for LOF1 in both organ separation and axillary meristem formation. Expression of the meristem determinant STM was reduced in lof1 mutant paraclade junctions and lof1 enhanced the weak stm-10 mutant, such that double mutants had severe defects in meristem maintenance and organ separation. Our data implicate LOF1 and LOF2 in boundary specification, meristem initiation and maintenance, and organ patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation.

Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem formation and cotyledon boundary specification....

متن کامل

The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 Gene of Arabidopsis Acts in the Control of Meristem Cell Fate and Lateral Organ Development

The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomai...

متن کامل

An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation

Gene regulatory networks (GRNs) control development via cell type-specific gene expression and interactions between transcription factors (TFs) and regulatory promoter regions. Plant organ boundaries separate lateral organs from the apical meristem and harbor axillary meristems (AMs). AMs, as stem cell niches, make the shoot a ramifying system. Although AMs have important functions in plant dev...

متن کامل

CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum.

Cupuliformis mutants are defective in shoot apical meristem formation, but cup plants overcome this early barrier to development to reach maturity. CUP encodes a NAC-domain transcription factor, homologous to the Petunia NAM and Arabidopsis CUC proteins. The phenotype of cup mutants differs from those of nam and cuc1 cuc2 in that dramatic organ fusion is observed throughout development. In addi...

متن کامل

Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity.

Plant lateral organs are initiated as small protrusions on the flanks of shoot apical meristems. Organ primordia are separated from the remainder of the meristem by distinct cell types that create a morphological boundary. The Arabidopsis thaliana gain-of-function mutant jagged lateral organs-D (jlo-D) develops strongly lobed leaves, indicative of KNOX gene misexpression, and the shoot apical m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 14  شماره 

صفحات  -

تاریخ انتشار 2009